
1

29. March, 2023

Dione Protocol

SolidProof_io @solidproof_io

https://twitter.com/SolidProof_io
https://t.me/solidproof_io

Disclaimer	
3
Description	
5
Project Engagement	
5
Logo	
5
Contract Link	
5
Methodology	
7
Used Code from other Frameworks/Smart Contracts (direct imports)	
8
Tested Contract Files	
9
Source Lines	
10
Risk Level	
10
Capabilities	
11
Inheritance Graph	
12
CallGraph	
13
Scope of Work/Verify Claims	
14
Modifiers and public functions	
21
Source Units in Scope	
23
Critical issues	
24
High issues	
24
Medium issues	
24
Low issues	
25
Informational issues	
25
Alleviation	
25
Audit Comments	
25
SWC Attacks	 26

2

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

Version Date Description

1.0 24. March 2023 • Layout project
• Automated- /Manual-Security Testing
• Summary

1.1 29. March 2023 • Reaudit

3

http://SolidProof.io

Network
Ethereum

Website
https://dioneprotocol.com

Telegram
t.me/DioneProtocol

Twitter
twitter.com/DioneProtocol

Instagram
instagram.com/DioneProtocol

YouTube
youtube.com/DioneProtocol

4

https://dioneprotocol.com
http://t.me/DioneProtocol
http://twitter.com/DioneProtocol
http://instagram.com/DioneProtocol
http://youtube.com/DioneProtocol

Description
This document, the Whitepaper, is the only source of truth regarding
Dione. The technologies and products introduced in this document are
currently in development and this document will continue to evolve.
Therefore, this document does not aim to provide definite and absolute
answers.
Project Engagement
During the Date of 21 March 2023, Dione Protocol Team engaged
Solidproof.io to audit smart contracts that they created. The engagement
was technical in nature and focused on identifying security flaws in the
design and implementation of the contracts. They provided Solidproof.io
with access to their code repository and whitepaper.

Logo

Contract Link
v1.0
• DioneStaking (Proxy):

https://etherscan.io/address/
0xc7D446AE32791D96eF04983D5c9233348ae4bBAf

• Implementation: https://etherscan.io/address/
0x04108C0B1E615aB7765383F35E4fAb8628760646#code

v1.1
• DioneStaking (Proxy):

https://etherscan.io/address/
0xc7D446AE32791D96eF04983D5c9233348ae4bBAf

• Implementation: https://etherscan.io/address/
0x0c6dFD9B2f0bB08e52BCc0C20fE4c4957Fb58f3E#code

Note for Investors: We only Audited a staking token contract for Dione
Protocol. However, If the project has other contracts (for example, a
Presale, or token contract etc), and they were not provided to us in the
audit scope then we cannot comment on its security and we are not
responsible for it in any way.

5

https://etherscan.io/address/0xc7D446AE32791D96eF04983D5c9233348ae4bBAf
https://etherscan.io/address/0xc7D446AE32791D96eF04983D5c9233348ae4bBAf
https://etherscan.io/address/0xc7D446AE32791D96eF04983D5c9233348ae4bBAf
https://etherscan.io/address/0xc7D446AE32791D96eF04983D5c9233348ae4bBAf

Vulnerability & Risk Level
Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that
can disrupt the
contract functioning
in a number of
scenarios, or creates a
risk that the contract
may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9

A vulnerability that
have informational
character but is not
effecting any of the
code.

An observation that
does not determine a

level of risk

6

Auditing Strategy and Techniques
Applied
Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:
i) Test coverage analysis, which is the process of determining whether the test

cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

7

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

8

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0
File Name SHA-1 Hash

contracts/
DioneStaking.sol

796f3f2801aae304d95ed75610332ea6e60a
0498

9

Metrics
Source Lines
v1.0

Risk Level
v1.0

10

Capabilities

Components

11

Inheritance Graph
v1.0

12

CallGraph
v1.0

13

Scope of Work/Verify Claims
The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:
1. Is contract an upgradeable
2. Deployer cannot lock user funds
3. Deployer cannot pause the contract
4. Deployer cannot set fees
5. Overall checkup (Smart Contract Security)

14

Is contract an upgradeable

Comments:
v1.0
• Owner can deploy a new version of the contract which can change any

limit and give owner new privileges
• Be aware of this and do your own research for the contract which

is the contract pointing to

Name

Is contract an upgradeable? Yes

15

Write functions of contract
v1.0

16

Deployer cannot lock user funds

Comments:
v1.0
• Owner can lock user funds by disabling the withdraw function (which

will force users to pay the penalty for early withdraw) and changing the
staking token address, in which case the users won’t be able to
withdraw staked tokens.

Name Exist Tested Status

Deployer can lock ✓ ✓ ✘

17

Deployer cannot pause the contract

Comments:
v1.0
• Owner cannot pause contract

Name Exist Tested Status

Deployer cannot pause ✓ ✓ ✓

18

Deployer cannot set fees

Comments:
v1.1
• Penalty cannot be set without any limitations. The maximum can be

10%

Name Exist Tested Status

Deployer can set fees over 10% ✓ ✓ ✓
Deployer can set fees to nearly 100% or to 100% ✓ ✓ ✓

19

Overall checkup (Smart Contract Security)

Legend

Tested Verified

✓ ✓

Attribute Symbol

Verified / Checked ✓
Partly Verified ⚑
Unverified / Not checked ✘

Not available -

20

Modifiers and public functions
v1.1

Ownership Privileges
• The owner can update the out of tiers penalty percent to any arbitrary

value.
• Add penalty tiers with any arbitrary value for validity
• Enable/Disable the finishing status of staking
• Withdraw tokens from the contract but not the staking tokens.
• Update reimbursement fee, and reward percent to any arbitrary value
• Please note that the owner can stop deposits at anytime by updating

the “isFinished” status

21

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

22

Source Units in Scope
v1.0

Legend
Attribute Description

Lines total lines of the source unit

nLines normalised lines of the source unit (e.g. normalises functions
spanning multiple lines)

nSLOC normalised source lines of code (only source-code lines; no
comments, no blank lines)

Comment Lines lines containing single or block comments

Complexity Score
a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

23

Audit Results
Critical issues

High issues

Medium issues

No critical issues

No high issues

Issue File Type Line Description

#1 Main Owner can drain
tokens

300 The owner is able to
withdraw staked tokens from
the contract into the
“BurnAddress” because the
owner can set the Burn
address to any wallet at the
time of initialisation.
Moreover, the withdraw
function transfers the
withdrawal amount to the
burn address.

#2 Main Impossible Withdraw 285 It is impossible to withdraw
the staked tokens from the
contract without paying the
penalty because the
withdraw function sends the
staked amount to the burn
address.

Moreover, if a user choses to
withdraw early then the
staked tokens can be
withdrawn but only by
paying the penalty.

The owner can also force the
accounts to withdraw early
and pay the penalty.

24

Low issues

Informational issues

Alleviation
The medium issues stated above are acknowledged, and the SolidProof
team received the following response from Dione Protocol’s Team on 29
March 2023, 10:24 a.m UTC:

"Yes because we are going to be bridging the tokens to the new
blockchain coin for the user.

The user will no longer be holding on to Dione token after they withdraw
once they have fulfilled their staking term because we will be airdropping
them the same amount in Dione coin to their wallets.

This is all in our disclosures to the stakers as well before they stake they
have to sign off on terms of service.
For each burning, there is an event which will be emitted.

The bridge will listen to them and airdrop the migrated tokens in the
dione blockchain to the users.”

Audit Comments
We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
latest/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

29. March 2023:
• There is still an owner (Owner still has not renounced ownership)
• Owner can deploy a new version of the contract which can change any

limit and give owner new privileges
• Read whole report and modifiers section for more information

No low issues

No informational issues

25

https://docs.soliditylang.org/en/latest/natspec-format.html
https://docs.soliditylang.org/en/latest/natspec-format.html

SWC Attacks
ID Title Relationships Status

SW
C-1
36

Unencrypted
Private Data
On-Chain

CWE-767: Access to Critical
Private Variable via Public
Method

PASSED

SW
C-1
35

Code With No
Effects

CWE-1164: Irrelevant Code PASSED

SW
C-1
34

Message call
with
hardcoded
gas amount

CWE-655: Improper
Initialization

PASSED

SW
C-1
33

Hash
Collisions With
Multiple
Variable
Length
Arguments

CWE-294: Authentication
Bypass by Capture-replay

PASSED

SW
C-1
32

Unexpected
Ether balance

CWE-667: Improper Locking PASSED

SW
C-1
31

Presence of
unused
variables

CWE-1164: Irrelevant Code PASSED

SW
C-1
30

Right-To-Left-
Override
control
character
(U+202E)

CWE-451: User Interface (UI)
Misrepresentation of Critical
Information

PASSED

SW
C-1
29

Typographical
Error

CWE-480: Use of Incorrect
Operator

PASSED

SW
C-1
28

DoS With
Block Gas
Limit

CWE-400: Uncontrolled
Resource Consumption

PASSED

26

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

SW
C-1
27

Arbitrary
Jump with
Function Type
Variable

CWE-695: Use of Low-Level
Functionality

PASSED

SW
C-1
25

Incorrect
Inheritance
Order

CWE-696: Incorrect Behavior
Order

PASSED

SW
C-1
24

Write to
Arbitrary
Storage
Location

CWE-123: Write-what-where
Condition

PASSED

SW
C-1
23

Requirement
Violation

CWE-573: Improper Following
of Specification by Caller

PASSED

SW
C-1
22

Lack of Proper
Signature
Verification

CWE-345: Insufficient
Verification of Data
Authenticity

PASSED

SW
C-1
21

Missing
Protection
against
Signature
Replay Attacks

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

SW
C-1
20

Weak Sources
of
Randomness
from Chain
Attributes

CWE-330: Use of Insufficiently
Random Values

PASSED

SW
C-11
9

Shadowing
State Variables

CWE-710: Improper Adherence
to Coding Standards

PASSED

SW
C-11
8

Incorrect
Constructor
Name

CWE-665: Improper
Initialization

PASSED

SW
C-11
7

Signature
Malleability

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

27

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

SW
C-11
6

Timestamp
Dependence

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
5

Authorization
through
tx.origin

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
4

Transaction
Order
Dependence

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race
Condition')

PASSED

SW
C-11
3

DoS with
Failed Call

CWE-703: Improper Check or
Handling of Exceptional
Conditions

PASSED

SW
C-11
2

Delegatecall
to Untrusted
Callee

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
1

Use of
Deprecated
Solidity
Functions

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
0

Assert
Violation

CWE-670: Always-Incorrect
Control Flow Implementation

PASSED

SW
C-1
09

Uninitialized
Storage
Pointer

CWE-824: Access of
Uninitialized Pointer

PASSED

SW
C-1
08

State Variable
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

PASSED

SW
C-1
07

Reentrancy
CWE-841: Improper
Enforcement of Behavioral
Workflow

PASSED

SW
C-1
06

Unprotected
SELFDESTRUC
T Instruction

CWE-284: Improper Access
Control

PASSED

28

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

SW
C-1
05

Unprotected
Ether
Withdrawal

CWE-284: Improper Access
Control

PASSED

SW
C-1
04

Unchecked
Call Return
Value

CWE-252: Unchecked Return
Value

PASSED

SW
C-1
03

Floating
Pragma

CWE-664: Improper Control of
a Resource Through its
Lifetime

PASSED

SW
C-1
02

Outdated
Compiler
Version

CWE-937: Using Components
with Known Vulnerabilities

PASSED

SW
C-1
01

Integer
Overflow and
Underflow

CWE-682: Incorrect
Calculation

PASSED

SW
C-1
00

Function
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

PASSED

29

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

30

SolidProof_io @solidproof_io

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Alleviation
	Audit Comments
	SWC Attacks

