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Disclaimer 

SolidProof.io reports are not, nor should be considered, an “endorsement” 
or “disapproval” of any particular project or team. These reports are not, 
nor should be considered, an indication of the economics or value of any 
“product” or “asset” created by any team. SolidProof.io do not cover 
testing or auditing the integration with external contract or services (such 
as Unicrypt, Uniswap, PancakeSwap etc’...)  

SolidProof.io Audits do not provide any warranty or guarantee 
regarding the absolute bug- free nature of the technology analyzed, 
nor do they provide any indication of the technology proprietors. 
SolidProof Audits should not be used in any way to make decisions 
around investment or involvement with any particular project. These 
reports in no way provide investment advice, nor should be leveraged 
as investment advice of any sort.  

SolidProof.io Reports represent an extensive auditing process intending to 
help our customers increase the quality of their code while reducing the 
high level of risk presented by cryptographic tokens and blockchain 
technology. Blockchain technology and cryptographic assets present a 
high level of ongoing risk. SolidProof’s position is that each company and 
individual are responsible for their own due diligence and continuous 
security. SolidProof in no way claims any guarantee of security or 
functionality of the technology we agree to analyze.  

Version Date Description

1.0 24. March 2023 • Layout project 
• Automated- /Manual-Security Testing 
• Summary

1.1 29. March 2023 • Reaudit
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Network 
Ethereum 

Website 
https://dioneprotocol.com 

Telegram 
t.me/DioneProtocol 

Twitter 
twitter.com/DioneProtocol 

Instagram 
instagram.com/DioneProtocol 

YouTube 
youtube.com/DioneProtocol 
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Description 
This document, the Whitepaper, is the only source of truth regarding 
Dione. The technologies and products introduced in this document are 
currently in development and this document will continue to evolve. 
Therefore, this document does not aim to provide definite and absolute 
answers. 
Project Engagement  
During the Date of 21 March 2023, Dione Protocol Team engaged 
Solidproof.io to audit smart contracts that they created. The engagement 
was technical in nature and focused on identifying security flaws in the 
design and implementation of the contracts. They provided Solidproof.io 
with access to their code repository and whitepaper.  

Logo  

Contract Link  
v1.0 
• DioneStaking (Proxy): 

https://etherscan.io/address/
0xc7D446AE32791D96eF04983D5c9233348ae4bBAf 

• Implementation: https://etherscan.io/address/
0x04108C0B1E615aB7765383F35E4fAb8628760646#code 

v1.1 
• DioneStaking (Proxy): 

https://etherscan.io/address/
0xc7D446AE32791D96eF04983D5c9233348ae4bBAf 

• Implementation: https://etherscan.io/address/
0x0c6dFD9B2f0bB08e52BCc0C20fE4c4957Fb58f3E#code 

Note for Investors: We only Audited a staking token contract for Dione 
Protocol. However, If the project has other contracts (for example, a 
Presale, or token contract etc), and they were not provided to us in the 
audit scope then we cannot comment on its security and we are not 
responsible for it in any way. 
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Vulnerability & Risk Level 
Risk represents the probability that a certain source-threat will exploit 
vulnerability, and the impact of that event on the organization or system. 
Risk Level is computed based on CVSS version 3.0. 

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that 
can disrupt the 
contract functioning 
in a number of 
scenarios, or creates a 
risk that the contract 
may be broken.

Immediate action to 
reduce risk level.

High 7 – 8.9

A vulnerability that 
affects the desired 
outcome when using 
a contract, or provides 
the opportunity to 
use a contract in an 
unintended way.

Implementation of 
corrective actions as 

soon aspossible.

Medium 4 – 6.9

A vulnerability that 
could affect the 
desired outcome of 
executing the 
contract in a specific 
scenario.

Implementation of 
corrective actions in a 

certain period.

Low 2 – 3.9

A vulnerability that 
does not have a 
significant impact on 
possible scenarios for 
the use of the 
contract and is 
probably subjective.

Implementation of 
certain corrective 

actions or accepting 
the risk.

Informational 0 – 1.9

A vulnerability that 
have informational 
character but is not 
effecting any of the 
code.

An observation that 
does not determine a 

level of risk
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Auditing Strategy and Techniques 
Applied  
Throughout the review process, care was taken to evaluate the repository 
for security-related issues, code quality, and adherence to specification 
and best practices. To do so, reviewed line-by-line by our team of expert 
pentesters and smart contract developers, documenting any issues as 
there were discovered. 

Methodology  

The auditing process follows a routine series of steps:  
1. Code review that includes the following:  

i) Review of the specifications, sources, and instructions provided to SolidProof 
to make sure we understand the size, scope, and functionality of the smart 
contract. 

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities. 

iii) Comparison to specification, which is the process of checking whether the 
code does what the specifications, sources, and instructions provided to 
SolidProof describe. 

2. Testing and automated analysis that includes the following:  
i) Test coverage analysis, which is the process of determining whether the test 

cases are actually covering the code and how much code is exercised when 
we run those test cases. 

ii) Symbolic execution, which is analysing a program to determine what inputs 
causes each part of a program to execute. 

3. Best practices review, which is a review of the smart contracts to improve efficiency, 
effectiveness, clarify, maintainability, security, and control based on the established 
industry and academic practices, recommendations, and research.  

4. Specific, itemized, actionable recommendations to help you take steps to secure 
your smart contracts. 
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Used Code from other Frameworks/Smart 
Contracts (direct imports) 

Imported packages: 
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Tested Contract Files 
This audit covered the following files listed below with a SHA-1 Hash.  

A file with a different Hash has been modified, intentionally or otherwise, 
after the security review. A different Hash could be (but not necessarily) 
an indication of a changed condition or potential vulnerability that was 
not within the scope of this review. 

v1.0 
File Name SHA-1 Hash

contracts/
DioneStaking.sol

796f3f2801aae304d95ed75610332ea6e60a
0498
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Metrics 
Source Lines 
v1.0 

Risk Level 
v1.0 
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Capabilities 

Components 
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Inheritance Graph 
v1.0 
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CallGraph 
v1.0 
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Scope of Work/Verify Claims 
The above token Team provided us with the files that needs to be tested 
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main 
contract (usual the same name as team appended with .sol). 

We will verify the following claims: 
1. Is contract an upgradeable 
2. Deployer cannot lock user funds 
3. Deployer cannot pause the contract 
4. Deployer cannot set fees  
5. Overall checkup (Smart Contract Security) 
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Is contract an upgradeable 

Comments: 
v1.0 
• Owner can deploy a new version of the contract which can change any 

limit and give owner new privileges 
• Be aware of this and do your own research for the contract which 

is the contract pointing to 

Name

Is contract an upgradeable? Yes
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Write functions of contract 
v1.0 

16



Deployer cannot lock user funds 

Comments: 
v1.0 
• Owner can lock user funds by disabling the withdraw function (which 

will force users to pay the penalty for early withdraw) and changing the 
staking token address, in which case the users won’t be able to 
withdraw staked tokens. 

Name Exist Tested Status

Deployer can lock ✓ ✓ ✘
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Deployer cannot pause the contract 

Comments: 
v1.0 
• Owner cannot pause contract 

Name Exist Tested Status

Deployer cannot pause ✓ ✓ ✓
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Deployer cannot set fees 

Comments: 
v1.1 
• Penalty cannot be set without any limitations. The maximum can be 

10% 

Name Exist Tested Status

Deployer can set fees over 10% ✓ ✓ ✓
Deployer can set fees to nearly 100% or to 100% ✓ ✓ ✓

19



Overall checkup (Smart Contract Security) 

Legend 

Tested Verified

✓ ✓

Attribute Symbol

Verified / Checked ✓
Partly Verified ⚑
Unverified / Not checked ✘

Not available -
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Modifiers and public functions 
v1.1 

Ownership Privileges 
• The owner can update the out of tiers penalty percent to any arbitrary 

value. 
• Add penalty tiers with any arbitrary value for validity 
• Enable/Disable the finishing status of staking 
• Withdraw tokens from the contract but not the staking tokens.  
• Update reimbursement fee, and reward percent to any arbitrary value 
• Please note that the owner can stop deposits at anytime by updating 

the “isFinished” status 
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Please check if an OnlyOwner or similar restrictive modifier has been 
forgotten. 
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Source Units in Scope 
v1.0 

Legend 
Attribute Description

Lines total lines of the source unit

nLines normalised lines of the source unit (e.g. normalises functions 
spanning multiple lines)

nSLOC normalised source lines of code (only source-code lines; no 
comments, no blank lines)

Comment Lines lines containing single or block comments

Complexity Score
a custom complexity score derived from code statements that 
are known to introduce code complexity (branches, loops, calls, 
external interfaces, ...)
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Audit Results 
Critical issues

 

High issues 

 

Medium issues 

No critical issues

No high issues

Issue File Type Line Description

#1 Main Owner can drain 
tokens

300 The owner is able to 
withdraw staked tokens from 
the contract into the 
“BurnAddress” because the 
owner can set the Burn 
address to any wallet at the 
time of initialisation. 
Moreover, the withdraw 
function transfers the 
withdrawal amount to the 
burn address.

#2 Main Impossible Withdraw 285 It is impossible to withdraw 
the staked tokens from the 
contract without paying the 
penalty because the 
withdraw function sends the 
staked amount to the burn 
address. 

Moreover, if a user choses to 
withdraw early then the 
staked tokens can be 
withdrawn but only by 
paying the penalty. 

The owner can also force the 
accounts to withdraw early 
and pay the penalty.
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Low issues 

 

Informational issues 

 

Alleviation 
The medium issues stated above are acknowledged, and the SolidProof 
team received the following response from Dione Protocol’s Team on 29 
March 2023, 10:24 a.m UTC: 

"Yes because we are going to be bridging the tokens to the new 
blockchain coin for the user.  

The user will no longer be holding on to Dione token after they withdraw 
once they have fulfilled their staking term because we will be airdropping 
them the same amount in Dione coin to their wallets.  

This is all in our disclosures to the stakers as well before they stake they 
have to sign off on terms of service. 
For each burning, there is an event which will be emitted. 

The bridge will listen to them and airdrop the migrated tokens in the 
dione blockchain to the users.” 

Audit Comments 
We recommend you to use the special form of comments (NatSpec 
Format, Follow link for more information https://docs.soliditylang.org/en/
latest/natspec-format.html) for your contracts to provide rich 
documentation for functions, return variables and more. This helps 
investors to make clear what that variables, functions etc. do. 

29. March 2023: 
• There is still an owner (Owner still has not renounced ownership) 
• Owner can deploy a new version of the contract which can change any 

limit and give owner new privileges 
• Read whole report and modifiers section for more information 

No low issues

No informational issues
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SWC Attacks 
ID Title Relationships Status

SW
C-1
36

Unencrypted 
Private Data 
On-Chain

CWE-767: Access to Critical 
Private Variable via Public 
Method

PASSED

SW
C-1
35

Code With No 
Effects

CWE-1164: Irrelevant Code PASSED

SW
C-1
34

Message call 
with 
hardcoded 
gas amount

CWE-655: Improper 
Initialization

PASSED

SW
C-1
33

Hash 
Collisions With 
Multiple 
Variable 
Length 
Arguments

CWE-294: Authentication 
Bypass by Capture-replay

PASSED

SW
C-1
32

Unexpected 
Ether balance

CWE-667: Improper Locking PASSED

SW
C-1
31

Presence of 
unused 
variables

CWE-1164: Irrelevant Code PASSED

SW
C-1
30

Right-To-Left-
Override 
control 
character 
(U+202E)

CWE-451: User Interface (UI) 
Misrepresentation of Critical 
Information

PASSED

SW
C-1
29

Typographical 
Error

CWE-480: Use of Incorrect 
Operator

PASSED

SW
C-1
28

DoS With 
Block Gas 
Limit

CWE-400: Uncontrolled 
Resource Consumption

PASSED
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https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html


SW
C-1
27

Arbitrary 
Jump with 
Function Type 
Variable

CWE-695: Use of Low-Level 
Functionality

PASSED

SW
C-1
25

Incorrect 
Inheritance 
Order

CWE-696: Incorrect Behavior 
Order

PASSED

SW
C-1
24

Write to 
Arbitrary 
Storage 
Location

CWE-123: Write-what-where 
Condition

PASSED

SW
C-1
23

Requirement 
Violation

CWE-573: Improper Following 
of Specification by Caller

PASSED

SW
C-1
22

Lack of Proper 
Signature 
Verification

CWE-345: Insufficient 
Verification of Data 
Authenticity

PASSED

SW
C-1
21

Missing 
Protection 
against 
Signature 
Replay Attacks

CWE-347: Improper 
Verification of Cryptographic 
Signature

PASSED

SW
C-1
20

Weak Sources 
of 
Randomness 
from Chain 
Attributes

CWE-330: Use of Insufficiently 
Random Values

PASSED

SW
C-11
9

Shadowing 
State Variables

CWE-710: Improper Adherence 
to Coding Standards

PASSED

SW
C-11
8

Incorrect 
Constructor 
Name

CWE-665: Improper 
Initialization

PASSED

SW
C-11
7

Signature 
Malleability

CWE-347: Improper 
Verification of Cryptographic 
Signature

PASSED
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https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
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https://cwe.mitre.org/data/definitions/123.html
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https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html


SW
C-11
6

Timestamp 
Dependence

CWE-829: Inclusion of 
Functionality from Untrusted 
Control Sphere

PASSED

SW
C-11
5

Authorization 
through 
tx.origin

CWE-477: Use of Obsolete 
Function

PASSED

SW
C-11
4

Transaction 
Order 
Dependence

CWE-362: Concurrent 
Execution using Shared 
Resource with Improper 
Synchronization ('Race 
Condition')

PASSED

SW
C-11
3

DoS with 
Failed Call

CWE-703: Improper Check or 
Handling of Exceptional 
Conditions

PASSED

SW
C-11
2

Delegatecall 
to Untrusted 
Callee

CWE-829: Inclusion of 
Functionality from Untrusted 
Control Sphere

PASSED

SW
C-11
1

Use of 
Deprecated 
Solidity 
Functions

CWE-477: Use of Obsolete 
Function

PASSED

SW
C-11
0

Assert 
Violation

CWE-670: Always-Incorrect 
Control Flow Implementation

PASSED

SW
C-1
09

Uninitialized 
Storage 
Pointer

CWE-824: Access of 
Uninitialized Pointer

PASSED

SW
C-1
08

State Variable 
Default 
Visibility

CWE-710: Improper Adherence 
to Coding Standards

PASSED

SW
C-1
07

Reentrancy
CWE-841: Improper 
Enforcement of Behavioral 
Workflow

PASSED

SW
C-1
06

Unprotected 
SELFDESTRUC
T Instruction

CWE-284: Improper Access 
Control

PASSED
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https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html


SW
C-1
05

Unprotected 
Ether 
Withdrawal

CWE-284: Improper Access 
Control

PASSED

SW
C-1
04

Unchecked 
Call Return 
Value

CWE-252: Unchecked Return 
Value

PASSED

SW
C-1
03

Floating 
Pragma

CWE-664: Improper Control of 
a Resource Through its 
Lifetime

PASSED

SW
C-1
02

Outdated 
Compiler 
Version

CWE-937: Using Components 
with Known Vulnerabilities

PASSED

SW
C-1
01

Integer 
Overflow and 
Underflow

CWE-682: Incorrect 
Calculation

PASSED

SW
C-1
00

Function 
Default 
Visibility

CWE-710: Improper Adherence 
to Coding Standards

PASSED
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https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html
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